
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTr-27, NO. 8, AUGUST 1979 731

hohlleiter zur geschirmten Streifenleitung mit homogenem sowie [14] R. Mittra and T. Itoh, “A new technique for the analysis of the
inhomogenem Dielektrikum,” Ph.D. dissertation, Univ. of Bremen, dispersion characteristics of rnicrostnp lines: IEEE Trans. ~4icra-
Germany, 1976. wave Theory Tech., vol. MTT-19, pp. 47-56, 1971.

[13] G. Kowalski and R. Pregla, “Dispersion characteristics of shielded [15] H. J. Carlin, “A simplified circuit model for microstrip~ ,15?L%E
rnicrostrips with finite thickness,” Arch. Elek. Ubertragung, vol. 25, Trans. Microwave Theoy Tech., vol. M’lT-21, pp. 589–591, Sept.
pp. 193-196, 1971. 1973.

Analysis of an End Launcher for an X-Band
Rectangular Waveguide
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Abwmct—l%e armfysis of an end-lauslrer typq coaxfaf-to-mctmguk

wavegukfe transitfo~ exciting domfnant ‘f&I mode in X-band mdanguk

waveguide is presented. Expressions for the real and imaginary parts of tbe

fnput bnpedaaee seen by the coaxiaf fine are derived for the generaf case

of an offset launcher usfng seff-reaction of an assumed current over tbe

loop. The dimensions of tbe comWmed electric and magnetic 100PO having

low input VSWR in the coaxial lfue are determined. There is satisfactory

agreement between theoretical and experfmentaf results.

I. INTRODUCTION

F or the excitation of a two-dimensional array of rect-

angular waveguide radiators it is found convenient

[1], [2] to use a colinear end-launcher transition from

coaxial line-to-rectangular waveguide. Investigations on

these types of transitions have been carried out by a

number of workers. Wheeler [3] has empirically investi-

gated the design of such a transition by matching the

waveguide-to-coaxial line with the help of two step ridge

transformers. Dix [4] also established a theoretical design

procedure for the transition with a mixed four-section

impedance transformer consisting of two ridged steps

within the waveguide, one TEM section in the coaxial

line, and a hybrid section where the coaxial center-

conductor extends into the guide. A theoretical analysis

for the design of a transition consisting of an L-shaped

concentric loop without any additional impedance trans-

former has been presented by Das and Sanyal [5]. In their

design, the dimensions of the L-shaped loop were selected

in such a way that the real part of the input impedance

seen by the coaxial line was equal to characteristic imped-

ance of the coaxial line. The input reactance cancellation

was achieved by a trial and error method. The bandwidth

of the transition was very narrow. The maximum input
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VSWR of the transition was found to be 1.4 over the

frequency range 9.2–9.5 GHz (300 MHz). The bandwidth

of this type of transition can be more accurately de-

termined, and a method of its improvement can be found

if the explicit expressions for both real and imaginary

parts of the input impedance seen by the coaxial line in

terms of loop dimensions L,, a’, and b’ (Fig. 1) are known.

In this paper, a more general analysis applicable to

concentric as well as offset launcher in the form of an

L-shaped loop placed in a dominant TEO1-mode rectan-

gular waveguide is presented. The expressions for botb the

real and imaginary parts of input impedance seen by the

coaxial line are derived from the self-reaction o! an

assumed current over the probe. The expression for the

real part of input impedance is then used to find the IIoop

dimensions L}, a’, and b’ which give the real part of input

impedance to be equal or close to characteristic imped-

ance of the coaxial line over a range of frequencies. The

variation of input reactance for these loop dimensions is

computed as a function of frequency. From the variation

of input impedance, the loop dimensions Ll, a’, and b’

which give low input VSWR in the coaxial line over a

range of frequencies are determined. Theoretical andl ex-

perimental results for input VSWR are compared for a

transition with LI = 1.4 cm, a’= 0.4 cm, b’= 1.15 cm, and

the probe diameter 2R = 0.2 cm.

II. ANALYSIS

Fig. l(a) shows an L-shaped loop placed in a dominant

TEO1-mode rectangular waveguide and driven from a gen-

erator through a coaxial line. The input impedance !seen

by the coaxial line driving the L-shaped loop is obtained

from a stationary formula [6]:
+.

-= do‘i.lc= ‘~ ~: (1)

where ~ is the electric field inside the guide due to
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Fig. 1. Anoffset launcher forarectangular waveguide terminated into
matched load. (a) Longitudinal sectional view, cde L-shaped loop, cd
—longitudinal arm, de—transverse arm. (b) Transverse sectional view
at plane PP. (c) Longitudinal sectional view at plane RR. (d) Trans-
ver~esectional ~ew~tp lane QQ.

current, ~is distributed in the volume V, and Ii. is the

t~tal input current at thereferencepo~nt c (Fig. l(a)). If

EC~ is the electric field due to+current, Jc~ in the longitudi-

nal arm cd of the loop, and E~, is the electric field due to

current, ~~e in the transverse arm de of the loop, (1) then

takes the form:

In view of the stationary ~haracte~of the above formula,

the current distributions JC~ and J~, may be assumed of

the form [5]:

10
~d = ZJ;d = ;= ~=R— COS(K(L1 + a’ – z))d(x – (a’ +R sin ~))

‘~(y – (b’ + R COS @)), for O<z<Ll (3)

.7.== ii....=z.#&cos (Kx)ii(y – (b’ + R COS @’))

4(z – (L, + R sin +’)), for O<x<a’ (4)

where iiX and 2= are the unit vectors along x and z axis,

respectively, 2R is the diameter of cylindrical probe form-

ing the L-shaped loop, the variables @ and # are as

defined in Fig. l(b) and (c), and K= (2r/A), A being

free-space wavelength. The field produced by z-directed

current in the arm cd of the loop is given by [7]

ficd = v x /icd

(5)

where the vector potential AC~ due to Jc~ is

“ ‘in(wsin(%?/i’cd=liz~ ~
~=1~=1 2aby

J(“ jcd “~~’>”) ‘in
o (%sin(%?e’’(z-z’)du “)

The vector potential ~d, due to x-directed current, ~d, in

the arm de of the loop is given by [7]

‘de = ‘. ~~o ~~, & Cos
(%)sin(?’)

J(“ jde “,y’?z’) Cos
v (%)sin(%)e’’(z-z’)do ‘7)

The field inside the guide due to x-directed current is then

obtained using (5) and (7) with subscript cd replaced by

de. In (6) and (7) y is the propagation constant in the

waveguide, and is given by [7]

y=@’+(3’-K’< (8)

The + and – signs in the exponential appearing in (6)

and (7) correspond to z – z’ <0 and z – z’ >0, respec-

tively, The primed variables x’, y’, z’ and the unprimed
variables x, y, and z correspond to source and field points,

respectively. ~ = 1 for n = O, and •~ = 2 otherwise. Since the

current in the cylindrical conductor is distributed over its

surface, the volume integrals reduce to surface integral.

From (3), (4), (6), and (7) and considering that surface
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element is M@&’, expressions for the vector potentials

are obtained in the form:

icd=iiz$ ~ Sin(%)sin(%v
n==l m=l

2aby

2’?7 lz~ 10

“1 1
— COS(K(L1 + a’ – Iz’I))6(x’ – (a’ + R sin +))

o - L, 2T

()
.i_l(y’– (b’+ R cos q)) sin ~

()m7ry’
“sin —

b
~* Y(Z‘Z’) d$dz~

2&= ‘$O$,3A%3+7)
“JJ

a’ 27r 10
~ COS (~X’)~(y’ – (b’ + R COS @’))

00

()4(z’ – (L, + R sin q’)) cos ~

(9)

()m7ry’
. sin — ~*7(Z-Z’)d#dx~.

b
(lo)

For calculating the vector potentials a first-order ap-

proximation [8] for a conductor of small radius can be

made by putting R = O in all terms, where the effect of R
is very small. Thus terms of the form, sin (p~/a(a’ + R sin

4)) and cos (qn/b(b’ + R cm +)) can be replaced by sin
(pmz’/a) and cos (qmb’/b), respectively. Therefore, with a

conducting plate at z = O plane, the expression for the

vector potentials in z >0 region is obtained from (9) and

(10), as

icd= IO . mra’
~z~ ~

(–)n=l m=l ab(K2+y2) ‘ln a

. sin(~) sin(~) sin(~)

.{ycos(K(L1+a’-z)) -e-YL,

. [K sin (Ka’)+ y cos (Ka’)]

“ cosh (yz) + Ke – ‘z sin (K(L1 + a’))}

and

~~e=ZX ~ ~ % sin(~)
n- Om=l

“ ‘inh@Jc0s(3sin(? )e-”

“1()mra’
= sin —
Ka

cos (Ka’) – cos
a ()

~ sin (Ka’)

[K2-(:Y]

dominant as well as higher order modes. All higher order

modes contribute to the reactive part of the input imped-

ance.
In the evaluation of (2) assumption that R~O cannot. be

made as it leads to a divergent series [8]. From (3), (5),

and (11) the first term on the right-hand side of (21 is

obtained as

COS2(K(L1 + a’))

J2”JL’[-e
- YL1{ K sin (Ka’) + y cos (Ka’) }

. cosh yz + Ke-Yz sin (K(L1 + a’)) ] ,cos (K(L1 + a’ – z))

. sin( ~ (a’ + R sin +)) sin ( ~ (b’+ R cos +)) drpd.z.

(13)

The functions sin (n~/a(a’ + R sin ~)) and sin (mn/h)(b’

+ R cos q), appearing in the integrand, are expanded as

product of sine and cosine functions. Expressing the func-

tions sin (nrR/ a)(sin +), cos (n~R/ a)(sin +), sin

(m~R/b)(cos ~), and cos (rnnR/b)(cos +) into Fourier-

Bessel series and carrying out integration with respect to@

and also z, the expression for Xl is obtained in the fcmm:

1207T 1
‘XI = ‘n~l ~~1 KaKb COS2(K(l,l + a’))

(11)

“(sin2(+)sin2(+)[JQ(~)’
( 14)

where JO is the Bessel function of first kind, and

(12)

The current jCd, in the longitudinal arm cd, excites only

higher order modes in the rectangular waveguide, while

the current j~e in the transverse arm of the loop excites

F= e–YLI

{

$ sin (Ka’) + cos (Ka’)
1

{
* 2$ sin (K(L, + a’))– $ sin (Ka’) cosh (YLJ

+COS (Ka’) sinh (yLl)
)

()
2

1

+ ~ sin2 (K(L1 + a’)) + z sin (2K(L1 + a’)) .
Y 2y

.
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Similarly, from (4), (7), and (12) the second term on the

right-hand side of (2) is obtained in the form:
.+

—JJ~~d.s=i~ ~ ~~
m .=0 m.1 K2ab (Y/~)

1.

(–)

mrbt

cos2 (K(L1 + a’)) ‘ln b

> {=sin(+)cOs@a’)- cOs(%)sin@a’))2

[1 -(n7r/Ka)2]

J2*sin(~( )b’+ R cos +’) e- ‘R ‘in” d~’. (15)

Separating the above expression into real and imaginary

parts and reducing the double summation in the expres-

sion for imaginary part into single summation by the

method suggested in the literature [9], (15) reduces to

where

J J, I;

~ = 240z-

KaKb

x = 1207

2 KaKb

()~b’
sin2 —

b
sinz (Ka’)

COS2(K(L1 + a’))

()~b’
sin2 —

b
sin2 (Ka’)

COS2(K(L1 + a’))

and

VSWR= ~ (19)

where ZOC is the characteristic impedance of the input

coaxial line.

III. RESULTS

The variation of real part of the input impedance is

computed from (16a), and presented in Fig. 2 for L, and

a’ in the range 0.9< L, <1.4 cm, 0.32< a’ <0.5 cm, and

b’= 1.15 cm, R =0.1 cm. It is found from Fig. 2 that the

real part of the input impedance crosses the 50-0 line in

the case of an offset launcher. Further, the real part of the

input impedance is close to 50 L? over a wide-frequency

range for L, in the range 0.9< LI <1.4 cm, a’= 0.4 cm,

and b’= 1.15 cm. The reactive part of the input impedance

is, therefore, calculated from (14) and (16b)–(d) for these

dimensions of the loop. Single and double summations

appearing in the expressions for reactance are rapidly

convergent. The computed results on variation of input

reactance with frequency are presented in Fig. 3. From

sin (2 KL1~[ 1 – (r/Kb)2] )

~m
[JO(%)’O(K’{-)]

x = 12077 sin2 (Ku’)
3 (~loge(~)sin(+)-.o($) sin2(+)+;ycos2(%)Ku Cosz (K(L1 + ~’)) 2

[

_ K2b2 (2~b’/b)2
– z log.(~).~(~~-~(%~]}
4T2

X4= – 120 j (%sin(%)cos(Ka’)-_ cos(?)sin(K”’))2
Ku COS2(K(L1 + a’)) ~= 1 [(nm/Ka)2- 1]

. {Ko(K#l) - Ko(2K~b’)}.

In the above expressions, X2 is the reactance due to

dominant mode, X3 and Xl are the reactance due to
modes, with indexes n = O,m >1, and n >0, m > 1, respec-

tively. K. in (16d) is the modified Bessel function of the

second kind, and K.= ~~. From (14) and

(16) the total input impedance at the reference point “c”

is obtained as

ZinlC=Rim+ iXin=R+ i(X, +X,+X,+X4). (17)

The input reflection-coefficient amplitude at the reference

point c and the input VSWR in the coaxial line is de-

termined through the relations

,r,= ~[(R1n-ZOC)2+ X:]
(18)

~[(Rin+ ZOC)2+ x;]

(16a)

(16b)

(16c)

(16d)

Figs. 2(c) and 3 and using (18) and (19), the variation of

input VSWR in the coaxial line for a launcher with
L1 = i.4 cm, a’= 0.4 cm, b’= 1.15 cm, and probe diameter

=0.2 cm is presented in Fig. 4 together with correspond-

ing experimental data.

IV. CONCLUSION

The analysis of a L-shaped loop in a rectangular wave-

guide leads to the design of end-launcher type transition

with low input VSWR over a wide frequency band. There

is close agreement between theoretical and experimental

results for input VSWR seen by the coaxial line. The

minimum VSWR is 1.1, and it is less than 2.0 for

frequencies in the range 9.2< j< 10.9 GHz.

The concentric launcher (a’ = a/2= 0.5 cm, b’= b/2=

1.15 cm) with L1 adjusted for Rin = 50 Q gives high input
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Fig. 2. Variation of real part of the input impedance versus frequency.
(a) a’= 0.5 cm, b’= 1.15 cm (concentric). (b) a’ = 0.45 cm, b’ = 1.15 cm.
(c) a’=0.4 cm, b’=1.15 cm. (d) ‘-- ‘“ “-
launchers).
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t
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Fig. 3. Variation of imaginary part of the normalized input reactance
versus frequency for a’= 0.4 cm, b’= 1.15 cm, R = 0.1 cm.
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Fig. 4. Variation of input VSWR versus frequency for a’= 0.4 cm,
W= 1.15 cm, R=O.1 cm, LI=l.4 cm. —Theory, O---OExperimental.

reactance [5] and, therefore, needs additional arrange-

ments for the input reactance cancellation. The results

presented here show that the use of an offset launcher

(a’#a/2, b’= 1.15 cm) gives low input reactance which

passes through zero at a frequency where the real part of

the input impedance is close to 50 Q. The offset launclher,

therefore, does not require any additional arrangement for

reactance cancellation. The low input reactance in the

case of offset launcher can be attributed to the fact that as

the launcher is displaced from axis of the waveguide the

amplitudes of significant higher order modes decrease.
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